247 research outputs found

    Efficient Wireless Security Through Jamming, Coding and Routing

    Full text link
    There is a rich recent literature on how to assist secure communication between a single transmitter and receiver at the physical layer of wireless networks through techniques such as cooperative jamming. In this paper, we consider how these single-hop physical layer security techniques can be extended to multi-hop wireless networks and show how to augment physical layer security techniques with higher layer network mechanisms such as coding and routing. Specifically, we consider the secure minimum energy routing problem, in which the objective is to compute a minimum energy path between two network nodes subject to constraints on the end-to-end communication secrecy and goodput over the path. This problem is formulated as a constrained optimization of transmission power and link selection, which is proved to be NP-hard. Nevertheless, we show that efficient algorithms exist to compute both exact and approximate solutions for the problem. In particular, we develop an exact solution of pseudo-polynomial complexity, as well as an epsilon-optimal approximation of polynomial complexity. Simulation results are also provided to show the utility of our algorithms and quantify their energy savings compared to a combination of (standard) security-agnostic minimum energy routing and physical layer security. In the simulated scenarios, we observe that, by jointly optimizing link selection at the network layer and cooperative jamming at the physical layer, our algorithms reduce the network energy consumption by half

    Towards Provably Invisible Network Flow Fingerprints

    Full text link
    Network traffic analysis reveals important information even when messages are encrypted. We consider active traffic analysis via flow fingerprinting by invisibly embedding information into packet timings of flows. In particular, assume Alice wishes to embed fingerprints into flows of a set of network input links, whose packet timings are modeled by Poisson processes, without being detected by a watchful adversary Willie. Bob, who receives the set of fingerprinted flows after they pass through the network modeled as a collection of independent and parallel M/M/1M/M/1 queues, wishes to extract Alice's embedded fingerprints to infer the connection between input and output links of the network. We consider two scenarios: 1) Alice embeds fingerprints in all of the flows; 2) Alice embeds fingerprints in each flow independently with probability pp. Assuming that the flow rates are equal, we calculate the maximum number of flows in which Alice can invisibly embed fingerprints while having those fingerprints successfully decoded by Bob. Then, we extend the construction and analysis to the case where flow rates are distinct, and discuss the extension of the network model
    • …
    corecore